\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [1186]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 147 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (7 A+5 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 B \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-6/5*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*(7*A+5*C)*
(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/7*C*sin(d*x+c)/d/cos
(d*x+c)^(7/2)+2/5*B*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/21*(7*A+5*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+6/5*B*sin(d*x+c
)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {4149, 3100, 2827, 2716, 2719, 2720} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 (7 A+5 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {6 B \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(5/2),x]

[Out]

(-6*B*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(7*A + 5*C)*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*C*Sin[c + d*x])
/(7*d*Cos[c + d*x]^(7/2)) + (2*B*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (2*(7*A + 5*C)*Sin[c + d*x])/(21*d*C
os[c + d*x]^(3/2)) + (6*B*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 4149

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)
]^2), x_Symbol] :> Dist[b^2, Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; F
reeQ[{b, e, f, A, B, C, m}, x] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {C+B \cos (c+d x)+A \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x)} \, dx \\ & = \frac {2 C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2}{7} \int \frac {\frac {7 B}{2}+\frac {1}{2} (7 A+5 C) \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+B \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)} \, dx+\frac {1}{7} (7 A+5 C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (7 A+5 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} (3 B) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{21} (7 A+5 C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (7 A+5 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 B \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} (3 B) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 C \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (7 A+5 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 B \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.65 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.88 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-126 B \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 (7 A+5 C) \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+42 B \sin (c+d x)+126 B \cos ^2(c+d x) \sin (c+d x)+35 A \sin (2 (c+d x))+25 C \sin (2 (c+d x))+30 C \tan (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(5/2),x]

[Out]

(-126*B*Cos[c + d*x]^(5/2)*EllipticE[(c + d*x)/2, 2] + 10*(7*A + 5*C)*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2
, 2] + 42*B*Sin[c + d*x] + 126*B*Cos[c + d*x]^2*Sin[c + d*x] + 35*A*Sin[2*(c + d*x)] + 25*C*Sin[2*(c + d*x)] +
 30*C*Tan[c + d*x])/(105*d*Cos[c + d*x]^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(683\) vs. \(2(179)=358\).

Time = 4.38 (sec) , antiderivative size = 684, normalized size of antiderivative = 4.65

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 A \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )+\frac {2 B \left (24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+12 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+2 C \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{56 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{4}}-\frac {5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{42 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(684\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+
2/5*B/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*sin(1
/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*EllipticE(cos(1
/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*si
n(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)
*(sin(1/2*d*x+1/2*c)^2)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*C*(-1/56*cos(1/2*d*x+1/2
*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.48 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (7 i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-7 i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} B \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} B \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (63 \, B \cos \left (d x + c\right )^{3} + 5 \, {\left (7 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} + 21 \, B \cos \left (d x + c\right ) + 15 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )^{4}} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(7*I*A + 5*I*C)*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5
*sqrt(2)*(-7*I*A - 5*I*C)*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 63*I*sqrt
(2)*B*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 63*I*
sqrt(2)*B*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2
*(63*B*cos(d*x + c)^3 + 5*(7*A + 5*C)*cos(d*x + c)^2 + 21*B*cos(d*x + c) + 15*C)*sqrt(cos(d*x + c))*sin(d*x +
c))/(d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 19.40 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.73 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {30\,C\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+42\,B\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+70\,A\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{105\,d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}} \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/cos(c + d*x)^(5/2),x)

[Out]

(30*C*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2) + 42*B*cos(c + d*x)*sin(c + d*x)*hypergeom([-5
/4, 1/2], -1/4, cos(c + d*x)^2) + 70*A*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2)
)/(105*d*cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2))